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We demonstrate that the Bell test cannot be realized at finite temperatures in the vast majority of electronic
setups proposed previously for quantum entanglement generation. This fundamental difficulty is shown to
originate in a finite probability of quasiparticle emission from Fermi-sea detectors. In order to overcome the
feedback problem, we suggest a detection strategy, which takes advantage of a resonant coupling to the
quasiparticle drains. Unlike other proposals, the designed Bell test provides a possibility to determine the
critical temperature for entanglement production in the solid state.
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It is well known that, unlike photons, quasiparticles in the
Fermi sea injected from reservoirs, which are kept at thermal
equilibrium, can be entangled by just a tunnel barrier.1 This
allows for particularly simple proposals for quantum quasi-
particle entanglement, which do not involve interactions.1–5

Theoretical results for the entanglement production in differ-
ent electronic setups have been summarized in Refs. 6 and 7,
while yet no experimental evidence of the quasiparticle en-
tanglement in the Fermi sea has become available.

The quantum entanglement of two particles with respect
to a spinlike degree of freedom can be accessed experimen-
tally by measuring the spin correlator,

C�a,b� = ��a · ��1 � �b · ��2� , �1�

where �= ��x ,�y ,�z� is the vector of the Pauli matrices. The
spin projection of the particles in the detectors 1 and 2 is
measured with respect to the unit vectors a and b corre-
spondingly. If the correlation between the particles is of a
classical origin, the following Bell inequality holds,8

B = �C�a,b� + C�a�,b� + C�a,b�� − C�a�,b��� � 2, �2�

for arbitrary choice of the unit vectors a , b , a� , b�. The
violation of the inequality �Eq. �2�� is, therefore, sufficient
but not necessary condition for quantum entanglement.

In solid-state electronics, we deal with elementary excita-
tions in the Fermi gas, which are referred to as quasiparticles.
Even though the pairwise quasiparticle entanglement9,10 is
believed to be generated in many devices,11–14 its experimen-
tal observation is obscured by the nature of electronic detec-
tors. Those, unlike the photodetectors in optical setups, con-
tain a number of quasiparticles in the ground state, which fill
up available quantum levels below the Fermi energy. If a part
of the device is at finite temperature, the electron and hole
excitations are spontaneously created near the Fermi surface
resulting in a finite probability for a Fermi-sea detector to
emit. Such processes are harmful for any sensible Bell test.

The problem of quasiparticle entanglement detection has
been put forward in Refs. 15 and 16, where the possibility to

construct a Bell-type inequality with current cross correlators
is discussed. It has been suggested to take advantage of the
generalized spin correlator,

CM�a,b� =
��N1↑ − N1↓��N2↑ − N2↓��
��N1↑ + N1↓��N2↑ + N2↓��

, �3�

where Nn� is a number of particles with a spin projection �
registered by the detector n. �In solid state, the role of spin
can be played by other quantum degrees of freedom such as
orbital momentum or isospin.� Similarly to Eq. �1�, the spin
projection in Eq. �3� is measured with respect to the direction
a in the first detector and b in the second one. Both defini-
tions �Eqs. �1� and �3�� are equivalent in the original Bell
setup, if no more than two particles are received within the
detection time and the detectors do not emit particles. In
electronic circuits, the number of quasiparticles Nn� is given
by the time integral of a current In� flowing to the corre-
sponding Fermi-sea reservoir,

Nn� � �
0

tdet

dtIn��t� , �4�

which is not restricted. For large detection times tdet, one
typically observes �Nn↑−Nn↓�� �Nn↑+Nn↓�, hence the Bell in-
equality �Eq. �2�� cannot be violated and the corresponding
measurement is useless for entanglement detection. The dif-
ficulty has been discussed in Ref. 16 for zero temperature.

An essential problem occurs in the opposite limit
tdet→0 because Nn� defined by Eq. �4� can take on
negative values. This leads to fluctuations with
�Nn↑−Nn↓�� �Nn↑+Nn↓�, which are explicitly forbidden in the
Bell test. This situation is realized at finite temperatures.
Then, the violation of Eq. �2� has no relation to the entangle-
ment detection and the corresponding measurement is not of
a Bell type.

Thus, the violation of the inequality �Eq. �2�� with the
correlator C substituted by CM does not provide a conclusive
evidence for quantum entanglement generation at any finite
temperature. This difficulty clearly applies to the detection of
electron-hole entanglement7,13 produced by tunneling events
or by time-dependent gating. However, even in more sophis-
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ticated setups where zero-temperature detectors and finite-
temperature sources are represented by different metallic
leads �in close resemblance to the original Bell proposal�, the
Bell test based on Eq. �3� is flawed. Examples include three-
terminal fork geometries4 and four-terminal beam-splitter ge-
ometries with grounded detectors. We focus on the latter �see
Fig. 1� due to a number of previously proposed reali-
zations,1,3–5,11,17,18 which are mostly based on the directed
transport along quantum-Hall edge channels. Minor modifi-
cations, such as lowering chemical potential in one of the
detectors or increasing detection time, can suppress the prob-
ability of detector emission but lead, instead, to useless mea-
surement with �Nn↑−Nn↓�� �Nn↑+Nn↓�. The generic situation
is illustrated in Fig. 2 for the case of electronic beam splitter.

For quantum particles, the spin correlator from Eq. �3� is
expressed through the expectation value,

�N1�N2��� � K���,

K��� = tdet
2 	�I1���I2��� +� d�

2�
P������F��tdet/2�
 , �5�

where N and I are regarded as operators. We introduce the
function F�x�= �sin x�2 /x2 and the frequency-dependent
cross correlator,

P������ =� dtei�t�	I1��t�I2���0�� , �6�

with 	In��t�= In��t�− �In��. In Figs. 2 and 3, the correlator CM

defined by experimentally measurable quantities �Eqs. �5�
and �6�� is compared with the exact result of the density
matrix analysis of the final state.7

We restrict ourselves to an important class of systems
which do not involve spin-dependent scattering because the
chances to generate quantum entanglement with respect to
the spin degree of freedom are obviously maximized in such
setups. The values of P��� in Eq. �6� are related to the cross
correlator P of the corresponding spin-independent problem
as

P↑↑ = P↓↓ =
1

2
�1 + ab�P , �7�

P↑↓ = P↓↑ =
1

2
�1 − ab�P . �8�

This symmetry holds even for interacting electronic systems
provided the absence of spin dephasing. It follows from Eqs.
�7� and �8� that a neglection of the mean currents5,7 in Eq. �5�
is equivalent to CM�a ,b�=ab, hence the inequality �Eq. �2��
is violated with Bmax=2�2 irrespective of voltages, tempera-
ture, or other setup characteristics. Clearly, such violation
has nothing to do with pairwise quantum entanglement. We
will see that the problem persists even if the exact expression
for K��� is used.

In the absence of spin-dependent scattering, the mean cur-
rents measured by the detectors do not depend on the direc-
tions a and b, �In��= �In�. From Eqs. �5�–�8�, we obtain

CM�a,b� =



2 + 

ab , �9�

with a parameter 
 given by the ratio
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S 2

D 2
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+/−D
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V

V

FIG. 1. A generic beam splitter for entanglement production in
the solid state. The voltage bias applied between the sources S1 and
S2 generates an entangled outgoing state at the detectors D1 and D2
provided the temperature in the sources T is smaller than a critical
temperature Tc.
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FIG. 2. The spin cross correlator C obtained from the density
matrix of the final scattering state �solid lines; cf. Eq. �20��, and its
generalization CM, evaluated numerically from Eqs. �9�–�15� for
different values of the detection time eVtdet /h=0.01 ���, 0.1 ���, 1
���, 5 ��� �dashed lines; see Eqs. �21� and �22��.
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FIG. 3. The case of resonant detector coupling. The short-
dashed line shows CM from Eq. �26�, while the long-dashed lines
are numerical results for the Breit–Wigner resonances �Eq. �24��
with finite width �=0.01eV, detector voltage VD=−V, and different
detection times �tdet /h=0.01 ��� ,0.1 ���. The measurement is
useless for tdet�0.1h /�. The solid line shows the correlator C from
Eq. �20�.
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 =
� d�P���F��tdet/2�

2��I1��I2�
, �10�

where both the cross correlator P��� and the product of the
mean currents have to be calculated for the corresponding
spin-independent problem.

An example of such a calculation can be performed
within the Landauer–Büttiker scattering approach,19 which is
valid as far as inelastic processes in between the reservoirs
can be disregarded. Within the scattering approach, the mean
current to the reservoir 
 is given by

�I
� =
e

h
� dE�

�

�	
� − �S
��E��2�f��E� , �11�

where f
�E�= �1+exp��E−eV
� /kBT
��−1 is the Fermi distri-
bution function, which depends on the temperature of the
corresponding reservoir T
 and the voltage bias V
 applied.
Frequency-dependent correlator �6� of the currents flowing to
the reservoirs 
 and 
� reads19

P

���� =
e2

2h
� dE�

���

M

�,����E,���F����E,��� ,

F����E,�� = f��E� f̃���E + �� + f̃��E�f���E + �� ,

M

�;����E,�� = �	
�	
�� − S

�
* �E�S
���E + ���

��	
��	
��� − S

���
* �E + ��S
���E�� ,

�12�

f̃�E� 
 1 − f�E� . �13�

Let us consider a generic beam splitter with no spin-
dependent scattering depicted schematically in Fig. 1. Such a
setup is characterized by an energy-independent S matrix,

S = �0 s�

s 0
� , �14�

where 2�2 unitary matrices s and s� describe the transport
from sources to detectors and from detectors to sources, cor-
respondingly. We parametrize

s = �ei� 0

0 ei�����1 − � i��

i�� �1 − �
��ei� 0

0 ei��� , �15�

where �� �0,1� is the beam-splitter transparency and the
spin index is omitted. Following the majority of proposals,
both detectors and the second source are grounded, i.e., VD

VD1=VD2=0, VS2=0, while VS1=V is the voltage applied
between the sources.

At zero temperature, the beam splitter acts7 as a source of
spin-entangled Bell pairs,

��B� =
1
�2

�↑1↓2 − ↓1↑2� , �16�

where the index n=1,2 refers to the detector number. Such
an entanglement generation is due to the Pauli principle,
which guarantees that a filled state with E� �0,eV� in the
first source contains exactly two quasiparticles with the op-
posite spins.

The Bell pairs can be accessed at zero temperature by
performing a time-coincidence detection. For finite tempera-
ture T in the sources, the density matrix projection, which
corresponds to a single particle in each detector, is derived in
Appendix A,7

�11
out =

1

4
�1 − ��14 + ���B���B� , �17�

where 14 is the unit matrix in the two-particle Hilbert space
and � is an energy-independent weight factor,

� =
��1 − ���fS1 − fS2�2

��1 − ���fS1 − fS2�2 + 2fS1 f̃S1fS2 f̃S2

, �18�

where fSn is the Fermi distribution function in nth source.
Result �17� describes the mixed Werner state,20 which is en-
tangled as far as ��1 /3 according to the Wootters
formula.21 In the present case, this condition is equivalent to
T�Tc with the critical temperature Tc determined by the
equation7

��1 − ��sinh2�eV/2kBTc� = 1/4. �19�

From Eqs. �1� and �17�, one obtains the exact spin correlator,

C�a,b� = − �ab , �20�

which is plotted in Fig. 2 with the solid line for different
values of the transparency parameter. The corresponding Bell
inequality �Eq. �2�� can be violated for ��1 /�2, which is,
indeed, a sufficient condition for the entanglement. Whether
or not such a Bell test can be performed by measuring cur-
rent cross correlator �Eq. �3�� is, however, an open question.

In order to answer this question, we substitute expression
�14� for the S matrix to Eqs. �11� and �12�, where the sum-
mation runs over the index �= �S1,S2,D1,D2�. The cor-
relator CM is, then, obtained from Eqs. �9� and �10� with I1

 ID1, I2
 ID2, and P
PD1,D2.

For tdet�min�h /eV ,h /kBT�, we obtain


 = −
h

eVtdet
	coth� eV

2kBT
� −

2kBT

eV

 � 1, �21�

i.e., the corresponding measurement is useless for an en-
tanglement detection. Indeed, such a long-time measurement
is not projective; therefore, it does not single out the state
with one quasiparticle in each detector.22

In the opposite limit, we, however, find


 = − 1, tdet � min�h/eV,h/kBT� , �22�

hence, the inequality �Eq. �2�� is violated for any temperature
of the source. Thus, according to the density matrix analysis
�Eqs. �17� and �20��, the corresponding measurement is not
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of a Bell type. Both results �21� and �22� formally hold for
any temperature of the detectors.

The transition from non-Bell-type measurement to the
useless measurement with the increase of tdet is illustrated in
Fig. 2. The Bell parameter defined with the correlator CM

does not depend on the beam-splitter transparency � and can
easily exceed 2 even in the absence of any entanglement.

The result of Eq. �22� is equivalent to

�ID1�t�ID2�t�� = 0. �23�

At T=0, the currents IDn�t� are sign definite; hence, Eq. �23�
is exact for every single time-coincidence measurement in
agreement with the prediction of the density matrix ap-
proach. For rising temperatures T�0, the correlation �Eq.
�23�� holds only on average and is not sensitive to vanishing
quantum entanglement in the final state of the beam splitter
�Eq. �17��. Consequently, the inequality �Eq. �2�� with C sub-
stituted by CM can be violated for arbitrarily high tempera-
tures. The absence of critical temperature indicates once
again23 that such a violation has nothing to do with the en-
tanglement detection. Instead, the decay of CM�a ,b� with the
temperature in Fig. 2 �dashed lines� is determined by the
detection time tdet. Thus, the measurement of CM�a ,b� cannot
be used for the entanglement test in the beam-splitter setup
and the value of Tc cannot be inferred from such a measure-
ment as the matter of principle.

We propose a way to rescue the Bell measurement by
coupling detectors via the energy filters, which are described
by energy-dependent scattering amplitudes: rn , rn� , tn , tn�,
where n=1,2 is the number of the detector. The use of en-
ergy filters in the context of Bell measurement at zero tem-
perature has been discussed in Ref. 24. Let us illustrate our
results for the case of identical filters with the Breit–Wigner
form of the transmission amplitude,

tn�E� = ei	n��/2��E − E0 − i�/2�−1. �24�

The S matrix of the full setup including the filters is given by

S�E� = �s�r�E�s s�t��E�
t�E�s r��E�

� , �25�

where t=diag�t1 , t2�, r=diag�r1 ,r2�, etc. The condition for
time-coincidence detection now reads tdet�h /�. The cur-
rents IDn�t� can be made sign definite by applying an addi-
tional voltage bias VD, as shown in Fig. 1. The current fluc-
tuations due to temperature are not harmful for the Bell test
as far as �eVD��kBT, which is the only restriction on the
value of VD. In this case, there is no requirement for an
additional cooling of the detectors, so that a whole setup can
be kept in temperature equilibrium. Moreover, for ��eV,
the dependence on tdet vanishes, meaning that CM�a ,b� can
be obtained experimentally from zero-frequency noise mea-
surements. The feasibility of such a Bell test is illustrated in
Fig. 3 for realistic values of the parameters.

For �→0, we obtain, from Eqs. �9�, �10�, �12�, �24�, and
�25�, that

CM = − � ��1 − ���fS1 − fS2�2ab

��1 − ���fS1 − fS2�2 + 2fS1fS2
�

E=E0

. �26�

The result is plotted with the short-dashed line in Fig. 3. It is
evident from the comparison with Eqs. �18� and �20� that the
proposed measurement is always of the Bell type. The cor-
relator �Eq. �26�� tends to the exact one �Eq. �20�� for
E0�eV. The setup efficiency is, however, exponentially low
in this limit. The numerical results in the case of finite reso-
nance width �=0.01eV are plotted in Fig. 3 with the dashed
lines. The test provides the lower estimate for the critical
temperature.

In conclusion, we point out the fundamental restrictions
for the Bell test in electronic setups due to the quasiparticle
emission from Fermi-sea detectors. We propose a way to
rescue the Bell measurement by a resonant coupling to the
detectors. We show that the lower estimate of the critical
temperature for entanglement production can be experimen-
tally obtained in the proposed setup.
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APPENDIX A: DENSITY MATRIX PROJECTION

Following Ref. 7, we review the derivation of the density
matrix projection �Eq. �17�� for final scattering state in the
case of the setup depicted in Fig. 1. The density matrix of the
incoming state is given by

�in = �
n,E,�

� f̃Sn�E��0��0� + fSn�E�an�E
† �0��0�an�E� , �A1�

where fSn is the Fermi distribution function in the source Sn,

f̃Sn
1− fSn, and an�E is the fermion annihilation operator for
an incoming scattering state at the channel n and energy E.
The annihilation operators for the outgoing scattering states,
bn�E, are obtained from the relation,

bn�E = �
m

snm�E�am�E, �A2�

where snm are the components of a unitary scattering matrix.
Thus, the density matrix of the final state is

�out = �
n,E,�

� f̃Sn�E��0��0� + fSn�E�cn�E
† �0��0�cn�E� , �A3�

where

cn�E
† = �

m

bm�E
† smn�E� . �A4�

In order to quantify the two-particle entanglement for the
partition HD1 � HD2 of the Hilbert space with respect to the
detectors, the state �out has to be projected onto the sectors
NE1N1,E2N2

of the Fock space with the energies E1 ,E2 and
particle numbers N1 ,N2 in the corresponding detectors D1,
D2. The density matrix �N1,N2

out of the projection factorizes
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into a product state in all sectors except for the sector NE1,E1
,

with E1=E2=E and N1=N2=1. Projection onto this sector is
found from Eq. �A3� as

w11�11 = fS1 f̃S1fS2 f̃S214 + 2��1 − ���fS1 − fS2�2��B���B� ,

�A5�

where 14 is the unit matrix in the two-particle Hilbert space,
��B� is the Bell state �Eq. �16��, and the weight factor w11 is
determined from the condition Tr �11=1 as

w11 = 4fS1 f̃S1fS2 f̃S2 + 2��1 − ���fS1 − fS2�2. �A6�

From Eqs. �A5� and �A6�, we obtain Eqs. �17� and �18�. By
substituting fSn= �1+exp��E−eVn� /kBT��, with V1=V, V2=0
in Eq. �18�, we can further simplify the parameter � as

��T� = 1 − 	1 + 2��1 − ��sinh2 eV

2kBT

−1

. �A7�

The critical temperature Tc is determined from the equation
��Tc�=1 /3, which is equivalent to Eq. �19�.

APPENDIX B: EVALUATION OF THE CORRELATOR CM

1. Plain beam splitter

We evaluate the generalized spin correlator CM�a ,b�
given by Eqs. �9� and �10� in the framework of the scattering
approach. By substituting the scattering matrix �Eqs. �14�
and �15�� into Eq. �11�, we calculate the mean currents,
which are measured in the detectors D1, D2, as

�ID1� = −
e

h
�1 − ��eV, �ID2� = −

e

h
�eV . �B1�

The cross correlator �Eq. �12�� is found as

PD1,D2��� =
e2

2h
��1 − ��	2�� coth� ��

2kBT
�

− �
�=�1

�eV + ����coth� eV + ���

2kBT
�
 .

�B2�

The parameter 
 given by Eq. �10� can be calculated analyti-
cally in two opposite limits.

�i� For large detection times, tdet�min�h /eV ,h /kBT�, one
can replace tdetF��tdet /2� with 2�	���, hence


 =
PD1,D2�0�

tdet�ID1��ID2�
. �B3�

This leads to result �21�.

�ii� For short detection times, tdet�min�h /eV ,h /kBT�, one
can approximate F��tdet /2��1 in the relevant frequency
range �����eV. In this limit, the integral in Eq. �10� does
not depend on temperature,

� d�PD1,D2��� = − 2�� e2V

h
�2

��1 − �� , �B4�

which leads to simple result �22�.

2. Beam splitter with energy filters

We repeat the calculation in a more general case of an
energy-dependent scattering matrix �Eq. �25��. From Eq.
�11�, we obtain the mean currents,

�ID1� =
e

h
� dE�t1�E��2�fD�E� − �1 − ��fS1�E� − �fS2�E�� ,

�B5�

�ID2� =
e

h
� dE�t2�E��2�fD�E� − �fS1�E� − �1 − ��fS2�E�� ,

�B6�

where fD�E�= �1+exp��E−eVD� /kBT�� is the Fermi distribu-
tion function in the detectors. From Eq. �12�, we calculate
the cross correlator,

PD1,D2��� =
e2

2h
��1 − �� � dEt1

*�E�t1�E + ���t2
*�E + ���t2�E�

��FS1,S1�E,��� + FS2,S2�E,��� − FS1,S2�E,���

− FS2,S1�E,���� , �B7�

where the function F
� is defined in Eq. �12�. These expres-
sions allow for the numerical evaluation of CM�a ,b� for ar-
bitrary energy-dependent scattering matrix �Eq. �25��.

In the case of sharp resonances, such as those of the
Breit–Wigner form �Eq. �24�� with �→0, we have

lim
�→0

�−1�tn�E��2 =
�

2
	�E − E0� , �B8�

and obtain, from Eqs. �B5�–�B8�,


 =
− ��1 − ���fS1 − fS2�2

�fD − �1 − ��fS1 − �fS2��fD − �fS1 − �1 − ��fS2�
,

�B9�

where the Fermi functions are evaluated at the position of the
resonance E=E0�0. For �eVD��kBT, the value fD�E0� is
exponentially small, hence Eq. �26� is justified. In general,
the setup is functional provided the detector voltage VD is
sufficiently large to ensure that fD is much smaller than both
fS1 and fS2 within the energy window of the filters.
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